
SPADE Documentation
Release 3.3.0

Javi Palanca

Jun 13, 2023

Contents

1 SPADE 3
1.1 Features . 3
1.2 Plugins . 4
1.3 Credits . 4

2 Foreword 5

3 The SPADE agent model 7
3.1 Connection to the platform . 7
3.2 The message dispatcher . 7
3.3 The behaviours . 7

4 Installation 9
4.1 Stable release . 9
4.2 From sources . 9

5 Quick Start 11
5.1 Creating your first dummy agent . 11
5.2 An agent with a behaviour . 12
5.3 Finishing a behaviour . 14
5.4 Finishing SPADE . 15
5.5 Creating an agent from within another agent . 15

6 Agent communications 17
6.1 Using templates . 17
6.2 Sending and Receiving Messages . 18

7 Advanced Behaviours 23
7.1 Periodic Behaviour . 23
7.2 TimeoutBehaviour . 25
7.3 Finite State Machine Behaviour . 27
7.4 Waiting a Behaviour . 29

8 Presence Notification 31
8.1 Presence Manager . 31
8.2 Availability handlers . 33
8.3 Contact List . 33

i

8.4 Subscribing and unsubscribing to contacts . 33
8.5 Example . 34

9 Web Graphical Interface 37
9.1 Creating custom web interfaces . 41

10 Extending SPADE with plugins 45
10.1 New Behaviours . 45
10.2 New Mixins . 46
10.3 New Libraries . 47

11 API Documentation 49
11.1 spade package . 49

12 Contributing 61
12.1 Types of Contributions . 61
12.2 Get Started! . 62
12.3 Pull Request Guidelines . 63
12.4 Tips . 63

13 Code of Conduct 65
13.1 Our Pledge . 65
13.2 Our Standards . 65
13.3 Our Responsibilities . 66
13.4 Scope . 66
13.5 Enforcement . 66
13.6 Attribution . 66

14 Credits 67
14.1 Development Lead . 67
14.2 Contributors . 67

15 History 69
15.1 3.3.0 (2023-06-13) . 69
15.2 3.2.3 (2022-12-13) . 69
15.3 3.2.2 (2021-11-25) . 69
15.4 3.2.1 (2021-11-16) . 69
15.5 3.2.0 (2021-07-13) . 69
15.6 3.1.9 (2021-07-08) . 70
15.7 3.1.8 (2021-07-08) . 70
15.8 3.1.7 (2021-06-25) . 70
15.9 3.1.6 (2020-05-22) . 70
15.10 3.1.5 (2020-05-21) . 70
15.11 3.1.4 (2019-11-04) . 70
15.12 3.1.3 (2019-07-18) . 70
15.13 3.1.2 (2019-05-14) . 71
15.14 3.1.1 (2019-05-14) . 71
15.15 3.1.0 (2019-03-22) . 71
15.16 3.0.9 (2018-10-24) . 71
15.17 3.0.8 (2018-10-02) . 71
15.18 3.0.7 (2018-09-27) . 71
15.19 3.0.6 (2018-09-27) . 72
15.20 3.0.5 (2018-09-21) . 72
15.21 3.0.4 (2018-09-20) . 72
15.22 3.0.3 (2018-09-12) . 72

ii

15.23 3.0.2 (2018-09-12) . 72
15.24 3.0.1 (2018-09-07) . 72
15.25 3.0.0 (2017-10-06) . 73

16 Indices and tables 75

Python Module Index 77

Index 79

iii

iv

SPADE Documentation, Release 3.3.0

Contents:

Contents 1

SPADE Documentation, Release 3.3.0

2 Contents

CHAPTER 1

SPADE

Smart Python Agent Development Environment

A multi-agent systems platform written in Python and based on instant messaging (XMPP).

Develop agents that can chat both with other agents and humans.

• Free software: MIT license

• Documentation: http://spade-mas.readthedocs.io/

1.1 Features

• Multi-agent platform based on XMPP

• Presence notification allows the system to know the current state of the agents in real-time

• Python >=3.8

3

https://pypi.python.org/pypi/spade
https://pypi.python.org/pypi/spade
https://pepy.tech/project/spade
https://pepy.tech/project/spade
https://pepy.tech/project/spade
https://opensource.org/licenses/MIT
https://pepy.tech/project/spade
https://github.com/javipalanca/spade/actions/workflows/python-package.yml
https://coveralls.io/github/javipalanca/spade?branch=master
https://spade-mas.readthedocs.io?badge=latest
https://pypi.python.org/pypi/spade
http://spade-mas.readthedocs.io/
http://www.xmpp.org

SPADE Documentation, Release 3.3.0

• Asyncio-based

• Agent model based on behaviours

• Supports FIPA metadata using XMPP Data Forms (XEP-0004: Data Forms)

• Web-based interface

• Use any XMPP server

1.2 Plugins

• spade_bdi (BDI agents with AgentSpeak):

– Code: https://github.com/javipalanca/spade_bdi

• spade_pubsub (PubSub protocol for agents):

– Code: https://github.com/javipalanca/spade_pubsub

– documentation: https://spade-pubsub.readthedocs.io

• spade_artifact (Artifacts for SPADE):

– Code: https://github.com/javipalanca/spade_artifact

– Documentation: https://spade-artifact.readthedocs.io

• spade_bokeh (bokeh plots for agents):

– Code: https://github.com/javipalanca/spade_bokeh

– Documentation: https://spade-bokeh.readthedocs.io

1.3 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

4 Chapter 1. SPADE

https://xmpp.org/extensions/xep-0004.html
https://github.com/javipalanca/spade_bdi
https://github.com/javipalanca/spade_pubsub
https://spade-pubsub.readthedocs.io
https://github.com/javipalanca/spade_artifact
https://spade-artifact.readthedocs.io
https://github.com/javipalanca/spade_bokeh
https://spade-bokeh.readthedocs.io
https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

CHAPTER 2

Foreword

The idea of an XMPP-based agent platform appeared one night at 4 A.M. when, studying the features of the Jabber
architecture, we found out great similarities with the ones of a FIPA-compliant agent platform. The XMPP protocol
offered a great architecture for agents to communicate in a structured way and solved many issues present when de-
signing a platform, such as authenticating the users (the agents), provide a directory or create communication channels.

We started to work on our first prototype of this Jabber-powered platform and within a week we had a small working
proof of concept by the name of Fipper which eventually allowed for dumb agents to connect and communicate
through a common XMPP server.

Since that day, things have changed a bit. The small proof of concept evolved into a full-featured FIPA platform, and
the new SPADE name was coined. As usual, we later had to find the meaning of the beautiful acronym. We came up
with Smart Python multi-Agent Development Environment, which sounded both good and geek enough.

The years passed, and everything evolved except the platform. Python reached version 3, which came with lots of
interesting changes and improvements. We also became better programmers (just because of the grounding and the
experience that the years give), we met the PEP8 and the Clean Code principles and they opened our eyes to a new
world. That’s why in 2017 SPADE was fully rewritten in Python 3.6, using asyncio and strictly following PEP8 and
Clean Code principles.

We hope you like this software and have as much fun using it as we had writing it. Of course we also hope that it may
become useful, but that is a secondary matter.

5

https://www.python.org/dev/peps/pep-0008/
http://www.matthewrenze.com/articles/what-is-clean-code/

SPADE Documentation, Release 3.3.0

6 Chapter 2. Foreword

CHAPTER 3

The SPADE agent model

The Agent Model is basically composed of a connection mechanism to the platform, a message dispatcher, and a set of
different behaviours that the dispatcher gives the messages to. Every agent needs an identifier called Jabber ID a.k.a.
JID and a valid password to establish a connection with the XMPP server.

The JID (composed by a username, an @, and a server domain) will be the name that identifies an agent in the platform,
e.g. myagent@myprovider.com.

3.1 Connection to the platform

Communications in SPADE are handled internally by means of the XMPP protocol. This protocol has a mechanism
to register and authenticate users against an XMPP server.

After a succesful register, each agent holds an open and persistent XMPP stream of communications with the platform.
This process is automatically triggered as part of the agent registration process.

3.2 The message dispatcher

Each SPADE agent has an internal message dispatcher component. This message dispatcher acts as a mailman: when a
message for the agent arrives, it places it in the correct “mailbox” (more about that later); and when the agent needs to
send a message, the message dispatcher does the job, putting it in the communication stream. The message dispatching
is done automatically by the SPADE agent library whenever a new message arrives or is to be sent.

3.3 The behaviours

An agent can run serveral behaviours simultaneously. A behaviour is a task that an agent can execute using repeat-
ing patterns. SPADE provides some predefined behaviour types: Cyclic, One-Shot, Periodic, Time-Out and Finite
State Machine. Those behaviour types help to implement the different tasks that an agent can perform. The kind of
behaviours supported by a SPADE agent are the following:

7

http://www.xmpp.org

SPADE Documentation, Release 3.3.0

• Cyclic and Periodic behaviours are useful for performing repetitive tasks.

• One-Shot and Time-Out behaviours can be used to perform casual tasks.

• The Finite State Machine allows more complex behaviours to be built.

Every agent can have as many behaviours as desired. When a message arrives to the agent, the message dispatcher
redirects it to the correct behaviour queue. A behaviour has a message template attached to it. Therefore, the message
dispatcher uses this template to determine which behaviour the message is for, by matching it with the correct template.
A behaviour can thus select what kind of messages it wants to receive by using templates.

8 Chapter 3. The SPADE agent model

CHAPTER 4

Installation

4.1 Stable release

To install SPADE, run this command in your terminal:

$ pip install spade

This is the preferred method to install SPADE, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

4.2 From sources

The sources for SPADE can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/javipalanca/spade

Or download the tarball:

$ curl -OL https://github.com/javipalanca/spade/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

9

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/javipalanca/spade
https://github.com/javipalanca/spade/tarball/master

SPADE Documentation, Release 3.3.0

10 Chapter 4. Installation

CHAPTER 5

Quick Start

5.1 Creating your first dummy agent

It’s time for us to build our first SPADE agent. We’ll assume that we have a registered user in an XMPP server with a
jid and a password. The jid contains the agent’s name (before the @) and the DNS or IP of the XMPP server (after the
@). But remember! You should have your own jid and password in an XMPP server running in your own computer
or in the Internet. In this example we will assume that our jid is your_jid@your_xmpp_server and the password is
your_password.

Hint: To create a new XMPP account you can follow the steps of https://xmpp.org/getting-started/

Hint: To install an XMPP server visit https://xmpp.org/software/servers.html (we recommend Prosody IM)

A basic SPADE agent is really a python script that imports the spade module and that uses the constructs defined
therein. For starters, fire up you favorite Python editor and create a file called dummyagent.py.

Warning: Remember to change the example’s jids and passwords by your own accounts. These accounts do not
exist and are only for demonstration purposes.

To create an agent in a project you just need to:

import spade

class DummyAgent(spade.agent.Agent):
async def setup(self):

print("Hello World! I'm agent {}".format(str(self.jid)))

async def main():

(continues on next page)

11

https://xmpp.org/getting-started/
https://xmpp.org/software/servers.html
https://prosody.im

SPADE Documentation, Release 3.3.0

(continued from previous page)

dummy = DummyAgent("your_jid@your_xmpp_server", "your_password")
await dummy.start()

if __name__ == "__main__":
spade.run(main())

This agent is only printing on screen a message during its setup and stopping. If you run this script you get the
following output:

$ python dummyagent.py
Hello World! I'm agent your_jid@your_xmpp_server
$

And that’s it! We have built our first SPADE Agent in 6 lines of code. Easy, isn’t it? Of course, this is a very very
dumb agent that does nothing, but it serves well as a starting point to understand the logics behind SPADE.

Note: A SPADE agent is an asyncronous agent. That means that all the code to run an agent must be executed in an
asyncronous loop. This is done by the spade.run() function. This function receives a coroutine as a parameter
and runs it in an async loop. In our example, the main() coroutine is the one that is run in the loop.

5.2 An agent with a behaviour

Let’s build a more functional agent, one that uses an actual behaviour to perform a task. As we stated earlier, the real
programming of the SPADE agents is done mostly in the behaviours. Let’s see how.

Let’s create a cyclic behaviour that performs a task. In this case, a simple counter. We can modify our existing
dummyagent.py script.

Warning: Remember to change the example’s jids and passwords by your own accounts. These accounts do not
exist and are only for demonstration purposes.

Example:

import asyncio
import spade
from spade import wait_until_finished
from spade.agent import Agent
from spade.behaviour import CyclicBehaviour

class DummyAgent(Agent):
class MyBehav(CyclicBehaviour):

async def on_start(self):
print("Starting behaviour . . .")
self.counter = 0

async def run(self):
print("Counter: {}".format(self.counter))
self.counter += 1
await asyncio.sleep(1)

(continues on next page)

12 Chapter 5. Quick Start

SPADE Documentation, Release 3.3.0

(continued from previous page)

async def setup(self):
print("Agent starting . . .")
b = self.MyBehav()
self.add_behaviour(b)

async def main():
dummy = DummyAgent("your_jid@your_xmpp_server", "your_password")
await dummy.start()
print("DummyAgent started. Check its console to see the output.")

print("Wait until user interrupts with ctrl+C")
await wait_until_finished(dummy)

if __name__ == "__main__":
spade.run(main())

As you can see, we have defined a custom behaviour called MyBehav that inherits from the
spade.behaviour.CyclicBehaviour class, the default class for all behaviours. This class represents a cyclic be-
haviour with no specific period, that is, a loop-like behaviour.

You can see that there is a coroutine called on_start() in the behaviour. This method is similar to the setup()
method of the agent class but it is run in the async loop. It is executed just before the main iteration of the behaviour
begins and it is used for initialization code. In this case, we print a line and initialize the variable for the counter. There
is also an on_end() coroutine that is executed when a behaviour is done or killed.

Also, there is the run() method, which is very important. In all behaviours, this is the method in which the core of
the programming is done, because this method is called on each iteration of the behaviour loop. It acts as the body of
the loop, sort of. In our example, the run() method prints the current value of the counter, increases it and then waits
for a second (to iterate again).

Warning: Note that the run() method is an async coroutine!. This is very important since SPADE is an async
library based on python’s asyncio. That’s why we can call async methods inside the run() method, like the
await asyncio.sleep(1), which sleeps during one second without blocking the event loop.

Now look at the setup() coroutine of the agent. There, we make an instance of MyBehav and add it to the current
agent by means of the add_behaviour() method. The first parameter of this method is the behaviour we want to
add, and there is also a second optional parameter which is the template associated to that behaviour, but we will talk
later about templates.

Let’s test our new agent:

$ python dummyagent.py
Agent starting . . .
DummyAgent started. Check its console to see the output.
Wait until user interrupts with ctrl+C
Starting behaviour . . .
Counter: 0
Counter: 1
Counter: 2
Counter: 3
Counter: 4
Counter: 5
Counter: 6
Counter: 7

5.2. An agent with a behaviour 13

https://docs.python.org/3/library/asyncio.html

SPADE Documentation, Release 3.3.0

. . . and so on. As we have not set any end condition, this agent would go on counting forever until we press ctrl+C.

5.3 Finishing a behaviour

If you want to finish a behaviour you can kill it by using the self.kill(exit_code) method. This method
marks the behaviour to be killed at the next loop iteration and stores the exit_code to be queried later.

An example of how to kill a behaviour:

import asyncio
import spade
from spade.agent import Agent
from spade.behaviour import CyclicBehaviour

class DummyAgent(Agent):
class MyBehav(CyclicBehaviour):

async def on_start(self):
print("Starting behaviour . . .")
self.counter = 0

async def run(self):
print("Counter: {}".format(self.counter))
self.counter += 1
if self.counter > 3:

self.kill(exit_code=10)
return

await asyncio.sleep(1)

async def on_end(self):
print("Behaviour finished with exit code {}.".format(self.exit_code))

async def setup(self):
print("Agent starting . . .")
self.my_behav = self.MyBehav()
self.add_behaviour(self.my_behav)

async def main():
dummy = DummyAgent("your_jid@your_xmpp_server", "your_password")
await dummy.start()

wait until user interrupts with ctrl+C
while not dummy.my_behav.is_killed():

try:
await asyncio.sleep(1)

except KeyboardInterrupt:
break

assert dummy.my_behav.exit_code == 10

await dummy.stop()

if __name__ == "__main__":
spade.run(main())

And the output of this example would be:

14 Chapter 5. Quick Start

SPADE Documentation, Release 3.3.0

$ python killbehav.py
Agent starting . . .
Starting behaviour . . .
Counter: 0
Counter: 1
Counter: 2
Counter: 3
Behaviour finished with exit code 10.

Note: An exit code may be of any type you need: int, dict, string, exception, etc.

Warning: Remember that killing a behaviour does not cancel its current run loop, if you need to finish the current
iteration you’ll have to call return.

Hint: If a exception occurs inside an on_start, run or on_end coroutines, the behaviour will be automatically
killed and the exception will be stored as its exit_code.

5.4 Finishing SPADE

A SPADE script will be running until all agents are stopped. If you want to stop all agents and finish the script you
may send a SIGINT (ctrl+C) signal. This signal will stop all agents.

Warning: The quit_spade() method has been deprecated since the current version of SPADE (3.3).

5.5 Creating an agent from within another agent

There is a common use case where you may need to create an agent from within another agent, that is, from within
another agent’s behaviour. This is a common case where `start must be called with an await statement in order
to work properly. Example:

import spade
from spade.agent import Agent
from spade.behaviour import OneShotBehaviour

class AgentExample(Agent):
async def setup(self):

print(f"{self.jid} created.")

class CreateBehav(OneShotBehaviour):
async def run(self):

agent2 = AgentExample("agent2_example@your_xmpp_server", "fake_password")
await agent2.start(auto_register=True)

(continues on next page)

5.4. Finishing SPADE 15

SPADE Documentation, Release 3.3.0

(continued from previous page)

async def main():
agent1 = AgentExample("agent1_example@your_xmpp_server", "fake_password")
behav = CreateBehav()
agent1.add_behaviour(behav)
await agent1.start(auto_register=True)

wait until the behaviour is finished to quit spade.
await behav.join()

if __name__ == "__main__":
spade.run(main())

16 Chapter 5. Quick Start

CHAPTER 6

Agent communications

6.1 Using templates

Templates is the method used by SPADE to dispatch received messages to the behaviour that is waiting for that
message. When adding a behaviour you can set a template for that behaviour, which allows the agent to deliver
a message received by the agent to that registered behaviour. A Template instance has the same attributes of a
Message and all the attributes defined in the template must be equal in the message for this to match.

The attributes that can be set in a template are:

• to: the jid string of the receiver of the message.

• sender the jid string of the sender of the message.

• body: the body of the message.

• thread: the thread id of the conversation.

• metadata: a (key, value) dictionary of strings to define metadata of the message. This is useful, for example, to
include FIPA attributes like ontology, performative, language, etc.

An example of template matching:

template = Template()
template.sender = "sender1@host"
template.to = "recv1@host"
template.body = "Hello World"
template.thread = "thread-id"
template.metadata = {"performative": "query"}

message = Message()
message.sender = "sender1@host"
message.to = "recv1@host"
message.body = "Hello World"
message.thread = "thread-id"
message.set_metadata("performative", "query")

(continues on next page)

17

http://www.fipa.org

SPADE Documentation, Release 3.3.0

(continued from previous page)

assert template.match(message)

Templates also support boolean operators to create more complex templates. Bitwise operators (&, |, ^ and ~) may be
used to combine simpler templates.

• &: Does a boolean AND between templates.

• |: Does a boolean OR between templates.

• ^: Does a boolean XOR between templates.

• ~: Returns the complement of the template.

Some examples of these operators:

t1 = Template()
t1.sender = "sender1@host"
t2 = Template()
t2.to = "recv1@host"
t2.metadata = {"performative": "query"}

m = Message()
m.sender = "sender1@host"
m.to = "recv1@host"
m.metadata = {"performative": "query"}

And AND operator
assert (t1 & t2).match(m)

t3 = Template()
t3.sender = "not_valid_sender@host"

A NOT complement operator
assert (~t3).match(m)

6.2 Sending and Receiving Messages

As you know, messages are the basis of every MAS. They are the centre of the whole “computing as interaction”
paradigm in which MAS are based. So it is very important to understand which facilities are present in SPADE to
work with agent messages.

First and foremost, threre is a Message class. This class is spade.message.Message and you can instantiate it
to create new messages to work with. The class provides a method to introduce metadata into messages, this is useful
for using the fields present in standard FIPA-ACL Messages. When a message is ready to be sent, it can be passed on
to the send() method of the behaviour, which will trigger the internal communication process to actually send it to its
destination. Note that the send function is an async coroutine, so it needs to be called with an await statement.

Warning: Remember to change the example’s jids and passwords by your own accounts. These accounts do not
exist and are only for demonstration purposes.

Here is a self-explaining example:

18 Chapter 6. Agent communications

SPADE Documentation, Release 3.3.0

import spade
from spade.agent import Agent
from spade.behaviour import OneShotBehaviour
from spade.message import Message
from spade.template import Template

class SenderAgent(Agent):
class InformBehav(OneShotBehaviour):

async def run(self):
print("InformBehav running")
msg = Message(to="receiver@your_xmpp_server") # Instantiate the

→˓message
msg.set_metadata("performative", "inform") # Set the "inform" FIPA

→˓performative
msg.set_metadata("ontology", "myOntology") # Set the ontology of the

→˓message content
msg.set_metadata("language", "OWL-S") # Set the language of the

→˓message content
msg.body = "Hello World" # Set the message content

await self.send(msg)
print("Message sent!")

set exit_code for the behaviour
self.exit_code = "Job Finished!"

stop agent from behaviour
await self.agent.stop()

async def setup(self):
print("SenderAgent started")
self.b = self.InformBehav()
self.add_behaviour(self.b)

async def main():
senderagent = SenderAgent("sender@your_xmpp_server", "sender_password")
await senderagent.start(auto_register=True)
print("Sender started")

await spade.wait_until_finished(receiveragent)
print("Agents finished")

if __name__ == "__main__":
spade.run(main())

This code would output:

$ python sender.py
SenderAgent started
InformBehav running
Message sent!
Agent finished with exit code: Job Finished!

Ok, we have sent a message but now we need someone to receive that message. Show me the code:

6.2. Sending and Receiving Messages 19

SPADE Documentation, Release 3.3.0

import spade
from spade.agent import Agent
from spade.behaviour import OneShotBehaviour
from spade.message import Message
from spade.template import Template

class SenderAgent(Agent):
class InformBehav(OneShotBehaviour):

async def run(self):
print("InformBehav running")
msg = Message(to="receiver@your_xmpp_server") # Instantiate the

→˓message
msg.set_metadata("performative", "inform") # Set the "inform" FIPA

→˓performative
msg.body = "Hello World" # Set the message content

await self.send(msg)
print("Message sent!")

stop agent from behaviour
await self.agent.stop()

async def setup(self):
print("SenderAgent started")
b = self.InformBehav()
self.add_behaviour(b)

class ReceiverAgent(Agent):
class RecvBehav(OneShotBehaviour):

async def run(self):
print("RecvBehav running")

msg = await self.receive(timeout=10) # wait for a message for 10 seconds
if msg:

print("Message received with content: {}".format(msg.body))
else:

print("Did not received any message after 10 seconds")

stop agent from behaviour
await self.agent.stop()

async def setup(self):
print("ReceiverAgent started")
b = self.RecvBehav()
template = Template()
template.set_metadata("performative", "inform")
self.add_behaviour(b, template)

async def main():
receiveragent = ReceiverAgent("receiver@your_xmpp_server", "receiver_password")
await receiveragent.start(auto_register=True)
print("Receiver started")

senderagent = SenderAgent("sender@your_xmpp_server", "sender_password")

(continues on next page)

20 Chapter 6. Agent communications

SPADE Documentation, Release 3.3.0

(continued from previous page)

await senderagent.start(auto_register=True)
print("Sender started")

await spade.wait_until_finished(receiveragent)
print("Agents finished")

if __name__ == "__main__":
spade.run(main())

Note: It’s important to remember that the send and receive functions are coroutines, so they always must be called
with the await statement.

In this example you can see how the RecvBehav behaviour receives the message because the template includes a
performative with the value inform in the metadata and the sent message does also include that metadata, so the
message and the template match.

The code below would output:

$ python send_and_recv.py
ReceiverAgent started
Receiver started
RecvBehav running
SenderAgent started
Sender started
InformBehav running
Message sent!
Message received with content: Hello World
Agents finished

Process finished with exit code 0

6.2. Sending and Receiving Messages 21

SPADE Documentation, Release 3.3.0

22 Chapter 6. Agent communications

CHAPTER 7

Advanced Behaviours

There are more complex types of behaviours that you can use in SPADE. Let’s see some of them.

7.1 Periodic Behaviour

This behaviour runs its run() body at a scheduled period. This period is set in seconds. You can also delay the
startup of the periodic behaviour by setting a datetime in the start_at parameter.

Warning: Remember to change the example’s jids and passwords by your own accounts. These accounts do not
exist and are only for demonstration purposes.

Let’s see an example:

import datetime
import getpass

import spade
from spade.agent import Agent
from spade.behaviour import CyclicBehaviour, PeriodicBehaviour
from spade.message import Message

class PeriodicSenderAgent(Agent):
class InformBehav(PeriodicBehaviour):

async def run(self):
print(f"PeriodicSenderBehaviour running at {datetime.datetime.now().

→˓time()}: {self.counter}")
msg = Message(to=self.get("receiver_jid")) # Instantiate the message
msg.body = "Hello World" # Set the message content

await self.send(msg)

(continues on next page)

23

SPADE Documentation, Release 3.3.0

(continued from previous page)

print("Message sent!")

if self.counter == 5:
self.kill()

self.counter += 1

async def on_end(self):
stop agent from behaviour
await self.agent.stop()

async def on_start(self):
self.counter = 0

async def setup(self):
print(f"PeriodicSenderAgent started at {datetime.datetime.now().time()}")
start_at = datetime.datetime.now() + datetime.timedelta(seconds=5)
b = self.InformBehav(period=2, start_at=start_at)
self.add_behaviour(b)

class ReceiverAgent(Agent):
class RecvBehav(CyclicBehaviour):

async def run(self):
print("RecvBehav running")
msg = await self.receive(timeout=10) # wait for a message for 10 seconds
if msg:

print("Message received with content: {}".format(msg.body))
else:

print("Did not received any message after 10 seconds")
self.kill()

async def on_end(self):
await self.agent.stop()

async def setup(self):
print("ReceiverAgent started")
b = self.RecvBehav()
self.add_behaviour(b)

async def main():
receiver_jid = input("Receiver JID> ")
passwd = getpass.getpass()
receiveragent = ReceiverAgent(receiver_jid, passwd)

sender_jid = input("Sender JID> ")
passwd = getpass.getpass()
senderagent = PeriodicSenderAgent(sender_jid, passwd)

await receiveragent.start(auto_register=True)

senderagent.set("receiver_jid", receiver_jid) # store receiver_jid in the sender
→˓knowledge base

await senderagent.start(auto_register=True)

await spade.wait_until_finished(receiveragent)
await senderagent.stop()
await receiveragent.stop()

(continues on next page)

24 Chapter 7. Advanced Behaviours

SPADE Documentation, Release 3.3.0

(continued from previous page)

print("Agents finished")

if __name__ == "__main__":
spade.run(main())

The output of this code would be similar to:

$ python periodic.py
ReceiverAgent started
RecvBehav running
PeriodicSenderAgent started at 17:40:39.901903
PeriodicSenderBehaviour running at 17:40:45.720227: 0
Message sent!
Message received with content: Hello World
RecvBehav running
PeriodicSenderBehaviour running at 17:40:46.906229: 1
Message sent!
Message received with content: Hello World
RecvBehav running
PeriodicSenderBehaviour running at 17:40:48.906347: 2
Message sent!
Message received with content: Hello World
RecvBehav running
PeriodicSenderBehaviour running at 17:40:50.903576: 3
Message sent!
Message received with content: Hello World
RecvBehav running
PeriodicSenderBehaviour running at 17:40:52.905082: 4
Message sent!
Message received with content: Hello World
RecvBehav running
PeriodicSenderBehaviour running at 17:40:54.904886: 5
Message sent!
Message received with content: Hello World
RecvBehav running
Did not received any message after 10 seconds
Agents finished

7.2 TimeoutBehaviour

You can also create a TimeoutBehaviour which is run once (like OneShotBehaviours) but its activation is trig-
gered at a specified datetime just as in PeriodicBehaviours.

Let’s see an example:

import getpass
import datetime
import spade
from spade.agent import Agent
from spade.behaviour import CyclicBehaviour, TimeoutBehaviour
from spade.message import Message

(continues on next page)

7.2. TimeoutBehaviour 25

SPADE Documentation, Release 3.3.0

(continued from previous page)

class TimeoutSenderAgent(Agent):
class InformBehav(TimeoutBehaviour):

async def run(self):
print(f"TimeoutSenderBehaviour running at {datetime.datetime.now().time()}

→˓")
msg = Message(to=self.get("receiver_jid")) # Instantiate the message
msg.body = "Hello World" # Set the message content

await self.send(msg)

async def on_end(self):
await self.agent.stop()

async def setup(self):
print(f"TimeoutSenderAgent started at {datetime.datetime.now().time()}")
start_at = datetime.datetime.now() + datetime.timedelta(seconds=5)
b = self.InformBehav(start_at=start_at)
self.add_behaviour(b)

class ReceiverAgent(Agent):
class RecvBehav(CyclicBehaviour):

async def run(self):
msg = await self.receive(timeout=10) # wait for a message for 10 seconds
if msg:

print("Message received with content: {}".format(msg.body))
else:

print("Did not received any message after 10 seconds")
self.kill()

async def on_end(self):
await self.agent.stop()

async def setup(self):
b = self.RecvBehav()
self.add_behaviour(b)

async def main():
receiver_jid = input("Receiver JID> ")
passwd = getpass.getpass()
receiveragent = ReceiverAgent(receiver_jid, passwd)

sender_jid = input("Sender JID> ")
passwd = getpass.getpass()
senderagent = TimeoutSenderAgent(sender_jid, passwd)

await receiveragent.start(auto_register=True)

senderagent.set("receiver_jid", receiver_jid) # store receiver_jid in the sender
→˓knowledge base

await senderagent.start(auto_register=True)

await spade.wait_until_finished(receiveragent)
await senderagent.stop()
await receiveragent.stop()
print("Agents finished")

(continues on next page)

26 Chapter 7. Advanced Behaviours

SPADE Documentation, Release 3.3.0

(continued from previous page)

if __name__ == "__main__":
spade.run(main())

This would produce the following output:

$python timeout.py
TimeoutSenderAgent started at 18:12:09.620316
TimeoutSenderBehaviour running at 18:12:14.625403
Message received with content: Hello World
Did not received any message after 10 seconds
Agents finished

7.3 Finite State Machine Behaviour

SPADE agents can also have more complex behaviours which are a finite state machine (FSM) which has registered
states and transitions between states. This kind of behaviour allows SPADE agents to build much more complex and
interesting behaviours in our agent model.

The FSMBehaviour class is a container behaviour (subclass of CyclicBehaviour) that implements the methods
add_state(name, state, initial) and add_transition(source, dest). Every state of the FSM
must be registered in the behaviour with a string name and an instance of the State class. This State class repre-
sents a node of the FSM and (since it’s a subclass of OneShotBehaviour) you must override the run coroutine just
as in a regular behaviour. Since a State is a regular behaviour, you can also override the on_start and on_end
coroutines, and, of course, use the send and receive coroutines to be able to interact with other agents via SPADE
messaging.

Note: To mark a State as initial state of the FSM set initial parameter to True when calling add_state
(add_state(name, state, initial=True)). A FSM can only have ONE initial state, so the initial
state will be the last one registered.

Transitions in a FSMBehaviour define from which state to which state it is allowed to transit. A State de-
fines its transit to another state by using the set_next_state method in its run coroutine. By using the
set_next_state method a state dinamically expresses to which state it transits when it finishes. After running a
state, the FSM reads this next_state value and, if the transition is valid, it transits to that state.

Warning: If the transition is not registered it raises a NotValidTransition exception and the FSM behaviour
is finished.

Warning: set_next_state must be called with the same string name with which that state was registered. If
the state is not registered a NotValidState exception is raised and the FSM behaviour is finished.

A FSMBehaviour has a unique template, which is shared with all the states of the FSM. You must take this into
account when you describe your FSM states, because they will share the same message queue.

Next, we are going to see an example where a very simple FSM is defined, with three states, which transitate from one
state to the next one in order. It also sends a message to itself at the first initial state, which is received at the third (and
final) state. Also note that the third state is a final state because it does not set a next_state to transit to:

7.3. Finite State Machine Behaviour 27

SPADE Documentation, Release 3.3.0

import spade
from spade.agent import Agent
from spade.behaviour import FSMBehaviour, State
from spade.message import Message

STATE_ONE = "STATE_ONE"
STATE_TWO = "STATE_TWO"
STATE_THREE = "STATE_THREE"

class ExampleFSMBehaviour(FSMBehaviour):
async def on_start(self):

print(f"FSM starting at initial state {self.current_state}")

async def on_end(self):
print(f"FSM finished at state {self.current_state}")
await self.agent.stop()

class StateOne(State):
async def run(self):

print("I'm at state one (initial state)")
msg = Message(to=str(self.agent.jid))
msg.body = "msg_from_state_one_to_state_three"
await self.send(msg)
self.set_next_state(STATE_TWO)

class StateTwo(State):
async def run(self):

print("I'm at state two")
self.set_next_state(STATE_THREE)

class StateThree(State):
async def run(self):

print("I'm at state three (final state)")
msg = await self.receive(timeout=5)
print(f"State Three received message {msg.body}")
no final state is setted, since this is a final state

class FSMAgent(Agent):
async def setup(self):

fsm = ExampleFSMBehaviour()
fsm.add_state(name=STATE_ONE, state=StateOne(), initial=True)
fsm.add_state(name=STATE_TWO, state=StateTwo())
fsm.add_state(name=STATE_THREE, state=StateThree())
fsm.add_transition(source=STATE_ONE, dest=STATE_TWO)
fsm.add_transition(source=STATE_TWO, dest=STATE_THREE)
self.add_behaviour(fsm)

async def main():
fsmagent = FSMAgent("fsmagent@your_xmpp_server", "your_password")
await fsmagent.start()

(continues on next page)

28 Chapter 7. Advanced Behaviours

SPADE Documentation, Release 3.3.0

(continued from previous page)

await spade.wait_until_finished(fsmagent)
await fsmagent.stop()
print("Agent finished")

if __name__ == "__main__":
spade.run(main())

7.4 Waiting a Behaviour

Sometimes you may need to wait for a behaviour to finish. In order to make this easy, behaviours provide a method
called join. Using this method you can wait for a behaviour to be finished. Be careful, since this is a blocking
operation. Example:

import asyncio
import getpass

import spade
from spade.agent import Agent
from spade.behaviour import OneShotBehaviour

class DummyAgent(Agent):
class LongBehav(OneShotBehaviour):

async def run(self):
await asyncio.sleep(5)
print("Long Behaviour has finished")

class WaitingBehav(OneShotBehaviour):
async def run(self):

await self.agent.behav.join() # this join must be awaited
print("Waiting Behaviour has finished")

async def setup(self):
print("Agent starting . . .")
self.behav = self.LongBehav()
self.add_behaviour(self.behav)
self.behav2 = self.WaitingBehav()
self.add_behaviour(self.behav2)

async def main():
jid = input("JID> ")
passwd = getpass.getpass()

dummy = DummyAgent(jid, passwd)
await dummy.start()

await dummy.behav2.join()
print("Stopping agent.")
await dummy.stop()

if __name__ == "__main__":
spade.run(main())

7.4. Waiting a Behaviour 29

SPADE Documentation, Release 3.3.0

30 Chapter 7. Advanced Behaviours

CHAPTER 8

Presence Notification

One of the most differentiating features of SPADE agents is their ability to maintain a roster or list of contacts (friends)
and to receive notifications in real time about their contacts. This is a feature inherited from instant messaging tech-
nology and that, thanks to XMPP, SPADE powers to the maximum for its agents.

8.1 Presence Manager

Every SPADE agent has a property to manage its presence. This manager is called presence and implements all the
methods and attributes to manage an agent’s presence notification.

A presence object has three attributes: the state, the status and the priority. Let’s see every one of them:

8.1.1 State

The state of a presence message shows if the agent is Available or Unavailable. This means that the agent is connected
to an XMPP server or not. This is very useful to know, before contacting an agent, if it is available to receive a message
in real time or not. The availability state is a boolean attribute.

Besides, the State has also an attribute to give additional information about how available the contact is. This is the
Show attribute. The Show attribute belongs to the class aioxmpp.PresenceShow and can take the following
values:

• PresenceShow.CHAT: The entity or resource is actively interested in chatting (i.e. receiving messages).

• PresenceShow.AWAY: The entity or resource is temporarily away, however it can receive messages (they
will probably be attended later)

• PresenceShow.XA: The entity or resource is away for an extended period (xa = “eXtended Away”).

• PresenceShow.DND: The entity or resource is busy (dnd = “Do Not Disturb”).

• PresenceShow.NONE: Signifies absence of the Show element. Used for unavailable states.

An agent can set its availability and show property:

31

SPADE Documentation, Release 3.3.0

agent.presence.set_available(availability=True, show=PresenceShow.CHAT)

Warning: If you set your presence to unavailable the only possible show state is PresenceShow.NONE.

A short method to set unavailability is:

agent.presence.set_unavailable()

To get your presence state:

my_state = agent.presence.state # Gets your current PresenceState instance.

agent.presence.is_available() # Returns a boolean to report wether the agent is
→˓available or not

my_show = agent.presence.state.show # Gets your current PresenceShow info.

Tip: If no Show element is provided, the entity is assumed to be online and available.

8.1.2 Status

The status is used to set a textual status to your presence information. It is used to explain with natural language your
current status which is broadcasted when the client connects and when the presence is re-emitted.

An agent can get its status as follows:

>> agent.presence.status
{None: "Working..."}

Warning: It should be noted that the status is returned as a dict with a None key. This is because the status
supports different languages. If you set the status as a string it is set as the default status (and stored with the key
None. If you want to set the status in different languages you can specify it using the keys:

>> agent.presence.status
{

None: "Working...",
"es": "Trabajando...",
"fr": "Travailler..."

}

8.1.3 Priority

Since an agent (and indeed any XMPP user) can have multiple connections to an XMPP server, it can set the priority
of each of those connections to establish the level of each one. The value must be an integer between -128 and +127.

32 Chapter 8. Presence Notification

SPADE Documentation, Release 3.3.0

8.1.4 Setting the Presence

There is a method that can be used to set the three presence attributes. Since they are all optional, you can change any
of the attribute values with every call:

agent.presence.set_presence(
state=PresenceState(True, PresenceShow.CHAT), #

→˓available and interested in chatting
status="Lunch",
priority=2

)

8.2 Availability handlers

To get notified when a contact gets available or unavailable you can override the on_available and
on_unavailable handlers. As you can see in the next example, these handlers receive the peer jid of the con-
tact and the stanza of the XMPP Presence message (class aioxmpp.Presence) which contains all its presence
information (availability, show, state, priority, . . .):

def my_on_available_handler(peer_jid, stanza):
print(f"My friend {peer_jid} is now available with show {stanza.show}")

agent.presence.on_available = my_on_available_handler

8.3 Contact List

Every contact to whom you are subscribed to appears in your contact list. You can use the get_contacts()
method to get the full list of your contacts. This method returns a dict where the keys are the JID of your contacts
and the values are an dict that show the information you have about each of your contacts (presence, name, approved,
groups, ask, subscription, . . .). Note that the “presence” value is an aioxmpp.Presence object with the latest
updated information about the contact’s presence.

Example:

>>> contacts = agent.presence.get_contacts()
>>> contacts[myfriend_jid]

{
'presence': Presence(type_=PresenceType.AVAILABLE),
'subscription': 'both',
'name': 'My Friend',
'approved': True

}

Warning: An empty contact list will return an empty dictionary.

8.4 Subscribing and unsubscribing to contacts

To subscribe and unsubscribe to/from a contact you have to send a special presence message asking for that subscrip-
tion. SPADE helps you by providing some methods that send these special messages:

8.2. Availability handlers 33

SPADE Documentation, Release 3.3.0

Send a subscription request to a peer_jid
agent.presence.subscribe(peer_jid)

Send an unsubscribe request to a peer_jid
agent.presence.unsubscribe(peer_jid)

8.4.1 Subscription handlers

The way you have to get notified when someone wants to subscribe/unsubscribe to you or when you want to get
notified if a subscription/unsubscription process has succeed is by means of handlers. There are four handlers that
you can override to manage these kind of messages: on_subscribe, on_unsubscribe, on_subscribed and
on_unsubscribed:

def my_on_subscribe_callback(peer_jid):
if i_want_to_approve_request:

self.approve(peer_jid)

agent.presence.on_subscribe = my_on_subscribe_callback

Note: In the previous example you can see also how to approve a subscription request by using the approvemethod.

Tip: If you want to automatically approve all subscription requests you can set the approve_all flag to True.

8.5 Example

This is an example that shows in a practical way the presence module:

import getpass
import asyncio

import spade
from spade.agent import Agent
from spade.behaviour import OneShotBehaviour

class Agent1(Agent):
async def setup(self):

print("Agent {} running".format(self.name))
self.add_behaviour(self.Behav1())

class Behav1(OneShotBehaviour):
def on_available(self, jid, stanza):

print("[{}] Agent {} is available.".format(self.agent.name, jid.split("@
→˓")[0]))

def on_subscribed(self, jid):
print("[{}] Agent {} has accepted the subscription.".format(self.agent.

→˓name, jid.split("@")[0]))
print("[{}] Contacts List: {}".format(self.agent.name, self.agent.

→˓presence.get_contacts()))
(continues on next page)

34 Chapter 8. Presence Notification

SPADE Documentation, Release 3.3.0

(continued from previous page)

def on_subscribe(self, jid):
print("[{}] Agent {} asked for subscription. Let's aprove it.".

→˓format(self.agent.name, jid.split("@")[0]))
self.presence.approve(jid)

async def run(self):
self.presence.on_subscribe = self.on_subscribe
self.presence.on_subscribed = self.on_subscribed
self.presence.on_available = self.on_available

self.presence.set_available()
self.presence.subscribe(self.agent.jid2)

class Agent2(Agent):
async def setup(self):

print("Agent {} running".format(self.name))
self.add_behaviour(self.Behav2())

class Behav2(OneShotBehaviour):
def on_available(self, jid, stanza):

print("[{}] Agent {} is available.".format(self.agent.name, jid.split("@
→˓")[0]))

def on_subscribed(self, jid):
print("[{}] Agent {} has accepted the subscription.".format(self.agent.

→˓name, jid.split("@")[0]))
print("[{}] Contacts List: {}".format(self.agent.name, self.agent.

→˓presence.get_contacts()))

def on_subscribe(self, jid):
print("[{}] Agent {} asked for subscription. Let's aprove it.".

→˓format(self.agent.name, jid.split("@")[0]))
self.presence.approve(jid)
self.presence.subscribe(jid)

async def run(self):
self.presence.set_available()
self.presence.on_subscribe = self.on_subscribe
self.presence.on_subscribed = self.on_subscribed
self.presence.on_available = self.on_available

async def main():
jid1 = input("Agent1 JID> ")
passwd1 = getpass.getpass()

jid2 = input("Agent2 JID> ")
passwd2 = getpass.getpass()

agent2 = Agent2(jid2, passwd2)
agent1 = Agent1(jid1, passwd1)
agent1.jid2 = jid2
agent2.jid1 = jid1
await agent2.start()
await agent1.start()

(continues on next page)

8.5. Example 35

SPADE Documentation, Release 3.3.0

(continued from previous page)

while True:
try:

await asyncio.sleep(1)
except KeyboardInterrupt:

break
await agent1.stop()
await agent2.stop()

if __name__ == "__main__":
spade.run(main())

36 Chapter 8. Presence Notification

CHAPTER 9

Web Graphical Interface

Each agent in SPADE provides a graphical interface by default that is accessible via web under the /spade path. To
activate the web interface you just have to start the web module of the agent just as follows:

agent = MyAgent("your_jid@your_xmpp_server", "your_password")
await agent.start()
agent.web.start(hostname="127.0.0.1", port="10000")

Then you can open a web browser and go to the url http://127.0.0.1:10000/spade and you’ll see the main
page of your agent:

37

SPADE Documentation, Release 3.3.0

Warning: Remember to change the example’s jids and passwords by your own accounts. These accounts do not
exist and are only for demonstration purposes.

In the previous image you can see the index page of an agent, where you can check its name and avatar, a list of its
behaviours, and a list of its contacts. In the top menu bar you can also check its incoming messages and the profile
menu of the agent where you can stop the agent.

Caution: Note that if you run several agents with the web interface each agent should have a different port in
order to avoid errors because some port is busy. The hostname can also be customized if you need to expose only

38 Chapter 9. Web Graphical Interface

SPADE Documentation, Release 3.3.0

to localhost or to a public ip (or even 0.0.0.0).

In the behaviours box you can see all the behaviours that have been added to the agent, both the active ones and the
ended ones. You can click the kill button to stop a behaviour and you can click the behaviour’s name to see more
information about it as in the next image:

In this page you can check some important information about the behaviour such as its mailbox, the template with
which it was registered, wether if it is killed or not or its exit code. Also, each type of behaviour may show any
information related with its internal data, e.g. in the previous image you can see that the behaviour is an FSMBehaviour
and the interface shows the current state where the FSM is and an image with the structure of the FSM. Finally, you
can also check all the messages that have been sent or received from/to this behaviour in the chat box.

Note: To see more information about a message just click on the message text and you’ll see something like the next
image:

39

SPADE Documentation, Release 3.3.0

From the index page you can also click on any of your contacts to see information about them. In a contact’s page you
can check the presence status of your contact, unsubscribe from it and check the messages exchanged with it in the
chat box. In such chat box you can also send a message to the contact.

40 Chapter 9. Web Graphical Interface

SPADE Documentation, Release 3.3.0

9.1 Creating custom web interfaces

SPADE web module can also be used to create your own applications served by your agents themselves. You can
register new paths in the web module and, following the model-view-controller paradigm (MVC), register controllers
that compute the necessary data from the agent (the model) and render a template (the view) which will be served
when someone requests the path with which it was registered. Let’s see an example:

async def hello_controller(request):
return {"number": 42}

a = Agent("your_jid@your_xmpp_server", "your_password")

a.web.add_get("/hello", hello_controller, "hello.html")

await a.start(auto_register=True)
a.web.start(port=10000)

In this example there are some elements that must be explained:

1. The hello_controller function is a coroutine (see the async statement) that returns a dictionary with
data that will be rendered in the template.

2. The add_get method allows us to register a new controller with a path and a template.

3. You can alternatively use the add_post method if the http request must be of type POST (e.g. sending forms).

Next we are going to explain a little more about the controller, the path and the template.

Note: Please, do not use the /spade path o avoid conflicts with the default agent pages (unless you want to modify
them).

9.1.1 Controller

The controller is the asynchronous method (or coroutine) that prepares the data to render the web page. It is an async
method that always receives a single argument: request. A controller queries the model, which in our case is the
agent (accessible in your coroutines using self.agent) and prepares a dictionary which will be used to render
the template (as we will see in a moment). Inside a controller coroutine you can do any agent related stuff (sending
messages, starting or killing behaviours, etc.).

Hint: Just remember the trick that a coroutine should not be too intensive in cpu, to avoid blocking the execution of
the agent.

An example of controller would be:

async def my_behaviours_controller(request):
behaviours_list = []
for b in self.agent.behaviours:

behaviours_list.append(str(b))

return {
"behaviours": behaviours_list,
"rand": random.random()

}

9.1. Creating custom web interfaces 41

SPADE Documentation, Release 3.3.0

This controller would pass a variable called “behaviours” with the names of all the agent’s behaviours to the template,
which would be able to render such data. It also generates a random number which is stored in the “rand” key of the
data passed to the template.

In the case that your controller responds to a POST query (it has been registered with the add_post method) you
can recover the data sent through the request by using this snippet of code:

async def my_post_controller(request):
form = await request.post()

Following the last example, the form variable would be a dictionary containing the data sent from the client. This way
you can create forms in your web applications to be sent to your agents.

Hint: Instead of returning a dict with data to be rendered you can redirect to another URL by raising an HTTPFound
exception from the aiohttp.web module as in the next example:

from aiohttp import web

async def my_redirect_controller(request):
raise web.HTTPFound("/")

JSON Responses

In the case that you need to return a JSON Response instead of an HTML page, is as simple as follows: call the
add_get or add_post method passing None as the template argument. Thus, the dictionary that you are returning
in your controller coroutine will be built into a JSON Response instead of rendering a jinja2 template.

Example:

async def json_controller(self, request):
return {"my_data": {'a': 0, 'b': 1, 'c': 2}}

self.web.add_get("/home", self.json_controller, template=None)

Hint: You may also use the raw=True parameter in the add_get and add_post methods to indicate that the
returned result should not be processed neither by jinja2 nor json parsing.

9.1.2 Path

The path will define where your application will respond to requests. You can use any allowed character for defining
paths. To define variable paths you can also use the aiohttp syntax. For example, a path /a/{agentjid}/c would
match with the url /a/agent@server/c. Then, in your controller, you can recover the agentjid value using
the request object:

async def my_controller(request):
jid = request.match_info['agentjid']
return {"jid": jid}

42 Chapter 9. Web Graphical Interface

https://aiohttp.readthedocs.io/en/stable/web_quickstart.html#variable-resources

SPADE Documentation, Release 3.3.0

9.1.3 Template

The template is an HTML file with an specific format which allows you to prepare dynamic web pages that are rendered
with the information generated by your agent. The SPADE templates are created in the Jinja2 format, which allows
the rendering process to have variables that come from our agent controllers and control structures.

In Jinja 2 variables are wrapped with double curly brackets (e.g. {{ my_variable }}) and the control structures
with curly brackets and the percentage symbol (e.g. {% if my_variable %} Hello World {% endif
%}).

Note: To know more about the Jinja 2 template engine please visit: http://jinja.pocoo.org/docs/

Hint: To allow SPADE to find your templates you can use the templates_path argument when starting the web
module:

agent.web.start(port=10000, templates_path="static/templates")

A simple example of template would be:

<html>
<head>
<title>{{ agent.jid }}</title>

</head>
<body>

My favourite number is {{ number }}
<h2>My behaviours:</h2>

{% for b in behaviours %}

 {{ b }}
{% endfor %}

</body>
</html>

Note: Note that the agent variable is always available in your templates to help you to access your internal data.

9.1. Creating custom web interfaces 43

http://jinja.pocoo.org
http://jinja.pocoo.org/docs/

SPADE Documentation, Release 3.3.0

44 Chapter 9. Web Graphical Interface

CHAPTER 10

Extending SPADE with plugins

This release of SPADE is designed as a very light version of the platform (compared with SPADE<3.0) which provides
only the core features that a MAS platform should have. This implies that some of the features that were provided by
previous versions of the platform are now not included.

How makes that sense? Well, all that previous features are not lost, but are going to be turned into plugins that you
can connect to your MAS application.

This way it is very easy to add new features to SPADE without disturbing the core development.

We have planned three different ways to design plugins for the SPADE platform, but of course we are open to sugges-
tions.

Warning: A plugin needs to comply with some requirements to be accepted as a SPADE plugin and be listed as
an official plugin on the main page:

1. It must be open source (of course!) and published in PyPi.

2. The package must be called spade-* (e.g.: spade-bdi, spade-owl, etc.) and be imported as import
spade_*.

3. It must be tested.

4. It must follow the PEP8.

You can develop new behaviours, new mixins that modify behaviours, and of course new libraries that your agents can
use inside your behaviours. Let’s see some examples of each of these ones:

10.1 New Behaviours

Developing new behaviours is as easy as creating a new class that inherits from spade.behaviour.
CyclicBehaviour (or any of its subclassed behaviours) and overload the methods that are needed. Pay atention to
the methods that are related with the control flow of a behaviour like _step, done and _run. And remember that
you should not overload the methods that are reserved for the user to be overloaded: on_start, run and on_end.

45

https://www.python.org/dev/peps/pep-0008/

SPADE Documentation, Release 3.3.0

Example:

class BDIBehaviour(spade.behaviour.PeriodicBehaviour):

async def _step(self):
the bdi stuff

def add_belief(self, ...):
...

def add_desire(self, ...):
...

def add_intention(self, ...):
...

def done(self):
the done evaluation

...

10.2 New Mixins

Some cases you don’t want to add a new behaviour, but to add new features to current behaviours or agents. This
can be done by means of mixins. A mixin is a class that a behaviour or an agent can inherit from, in addition to the
original parent class, making use of the multiple inheritance of python. This way, when we are creating our agent and
we implement its behaviour which is (for example) a cyclic behaviour and we want to add this behaviour a feature that
is provided by a plugin called spade-p2p that allows the agent to send P2P messages (by modifying the send and
receive methods of the behaviour) we should do the following:

from spade_p2p import P2PMixin

class MyNewBehaviour(P2PMixin, CyclicBehaviour):
...
async def run(self):

...
self.send(my_message, p2p=True)
...

Warning: The order of your mixins is important! The base behaviour class must be always the last one in the
method resolution order.

Hint: Remember that if you need to call the parent function of the base behaviour (or any other mixin in the method
resolution order), you must use the super() function (see the following example).

To develop this example mixin you should do the following:

class P2PMixin(object):
async def send(self, msg, p2p=False):

if p2p:
await self.send_p2p(msg)

else:
await super().send(msg)

(continues on next page)

46 Chapter 10. Extending SPADE with plugins

SPADE Documentation, Release 3.3.0

(continued from previous page)

async def send_p2p(self, msg):
...

In case you need to apply the mixin to the Agent class there are two hook coroutines that are pre-
pared to be overriden if needed. These coroutines are _hook_plugin_before_connection and
_hook_plugin_after_connection. They will be called before and after the connection to the server is done
respectively. In order to support multiple mixins it is important to call always to the parent method. Next, an example
of how to build a simple mixin is shown:

class MyMixin:
async def _hook_plugin_before_connection(self, *args, **kwargs):

await super()._hook_plugin_before_connection(*args, **kwargs)
do my plugin stuff before the connection is done

async def _hook_plugin_after_connection(self, *args, **kwargs):
await super()._hook_plugin_after_connection(*args, **kwargs)
do my plugin stuff after the connection is done

class MyAgent(MyMixin, Agent):
Inherit always from mixins first. Last class to inherit from is Agent.

10.3 New Libraries

Finally, the easiest way to add new features to your agents is by means of libraries. If you want your agents to support,
for example, the OWL content language, you don’t need to change spade, just make a library that handles it. Example:

from spade_owl import parse as owl_parse
from spade_owl import dump as owl_dump

class MyBehaviour(spade.behaviour.CyclicBehaviour):
async def run(self):

msg = await self.receive()

owl_content = owl_parse(msg.content)
do wat you want with the owl content

reply.content = owl_dump(...my owl reply...)

await self.send(reply)

10.3. New Libraries 47

SPADE Documentation, Release 3.3.0

48 Chapter 10. Extending SPADE with plugins

CHAPTER 11

API Documentation

11.1 spade package

11.1.1 Submodules

11.1.2 spade.agent module

class spade.agent.Agent(jid: str, password: str, verify_security: bool = False)
Bases: object

add_behaviour(behaviour: BehaviourType, template: Optional[spade.template.Template] = None)
→ None

Adds and starts a behaviour to the agent. If template is not None it is used to match new messages and
deliver them to the behaviour.

Args: behaviour (Type[spade.behaviour.CyclicBehaviour]): the behaviour to be started template
(spade.template.Template, optional): the template to match messages with (Default value = None)

avatar
Generates a unique avatar for the agent based on its JID. Uses Gravatar service with MonsterID option.

Returns: str: the url of the agent’s avatar

static build_avatar_url(jid: str)→ str
Static method to build a gravatar url with the agent’s JID

Args: jid (aioxmpp.JID): an XMPP identifier

Returns: str: an URL for the gravatar

dispatch(msg: spade.message.Message)→ List[_asyncio.Task]
Dispatch the message to every behaviour that is waiting for it using their templates match.

Args: msg (spade.message.Message): the message to dispatch.

Returns: list(asyncio.Future): a list of tasks for each message queuing in each matching behavior.

49

SPADE Documentation, Release 3.3.0

get(name: str)→ Any
Recovers a knowledge item from the agent’s knowledge base.

Args: name(str): name of the item

Returns: object: the object retrieved or None

has_behaviour(behaviour: Type[spade.behaviour.CyclicBehaviour])→ bool
Checks if a behaviour is added to an agent.

Args: behaviour (Type[spade.behaviour.CyclicBehaviour]): the behaviour instance to check

Returns: bool: a boolean that indicates wether the behaviour is inside the agent.

is_alive()→ bool
Checks if the agent is alive.

Returns: bool: wheter the agent is alive or not

name
Returns the name of the agent (the string before the ‘@’)

Returns: str: the name of the agent (the string before the ‘@’)

remove_behaviour(behaviour: Type[spade.behaviour.CyclicBehaviour])→ None
Removes a behaviour from the agent. The behaviour is first killed.

Args: behaviour (Type[spade.behaviour.CyclicBehaviour]): the behaviour instance to be removed

set(name: str, value: Any)
Stores a knowledge item in the agent knowledge base.

Args: name (str): name of the item value (object): value of the item

set_container(container: spade.container.Container)→ None
Sets the container to which the agent is attached

Args: container (spade.container.Container): the container to be attached to

set_loop(loop)→ None

setup()→ None
Setup agent before startup. This coroutine may be overloaded.

start(auto_register: bool = True)→ None
Starts this agent.

Args: auto_register (bool): register the agent in the server (Default value = True)

Returns: None

stop()→ None
Stops this agent.

submit(coro: Coroutine)→ _asyncio.Task
Runs a coroutine in the event loop of the agent. this call is not blocking.

Args: coro (Coroutine): the coroutine to be run

Returns: asyncio.Task: the Task assigned to the coroutine execution

exception spade.agent.AuthenticationFailure
Bases: Exception

50 Chapter 11. API Documentation

SPADE Documentation, Release 3.3.0

11.1.3 spade.behaviour module

exception spade.behaviour.BehaviourNotFinishedException
Bases: Exception

class spade.behaviour.CyclicBehaviour
Bases: object

This behaviour is executed cyclically until it is stopped.

enqueue(message: spade.message.Message)→ None
Enqueues a message in the behaviour’s mailbox

Args: message (spade.message.Message): the message to be enqueued

exit_code
Returns the exit_code of the behaviour. It only works when the behaviour is done or killed, otherwise it
raises an exception.

Returns: object: the exit code of the behaviour

Raises: BehaviourNotFinishedException: if the behaviour is not yet finished

get(name: str)→ Any
Recovers a knowledge item from the agent’s knowledge base.

Args: name (str): name of the item

Returns: Any: the object retrieved or None

is_done()→ bool
Check if the behaviour is finished

Returns: bool: whether the behaviour is finished or not

is_killed()→ bool
Checks if the behaviour was killed by means of the kill() method.

Returns: bool: whether the behaviour is killed or not

join(timeout: Optional[float] = None)→ None
Wait for the behaviour to complete

Args: timeout (Optional[float]): an optional timeout to wait to join (if None, the join is blocking)

Returns: None

Raises: TimeoutError: if the timeout is reached

kill(exit_code: Optional[Any] = None)→ None
Stops the behaviour

Args: exit_code (object, optional): the exit code of the behaviour (Default value = None)

mailbox_size()→ int
Checks if there is a message in the mailbox

Returns: int: the number of messages in the mailbox

match(message: spade.message.Message)→ bool
Matches a message with the behaviour’s template

Args: message(spade.message.Message): the message to match with

Returns: bool: wheter the messaged matches or not

11.1. spade package 51

SPADE Documentation, Release 3.3.0

on_end()→ None
Coroutine called after the behaviour is done or killed.

on_start()→ None
Coroutine called before the behaviour is started.

receive(timeout: Optional[float] = None)→ Optional[spade.message.Message]
Receives a message for this behaviour. If timeout is not None it returns the message or “None” after
timeout is done.

Args: timeout (float, optional): number of seconds until return

Returns: spade.message.Message: a Message or None

run()→ None
Body of the behaviour. To be implemented by user.

send(msg: spade.message.Message)→ None
Sends a message.

Args: msg (spade.message.Message): the message to be sent.

set(name: str, value: Any)→ None
Stores a knowledge item in the agent knowledge base.

Args: name (str): name of the item value (Any): value of the item

set_agent(agent)→ None
Links behaviour with its owner agent

Args: agent (spade.agent.Agent): the agent who owns the behaviour

set_template(template: spade.template.Template)→ None
Sets the template that is used to match incoming messages with this behaviour.

Args: template (spade.template.Template): the template to match with

start()→ None
starts behaviour in the event loop

class spade.behaviour.FSMBehaviour
Bases: spade.behaviour.CyclicBehaviour

A behaviour composed of states (oneshotbehaviours) that may transition from one state to another.

add_state(name: str, state: spade.behaviour.State, initial: bool = False)→ None
Adds a new state to the FSM.

Args: name (str): the name of the state, which is used as its identifier. state (spade.behaviour.State): The
state class initial (bool, optional): wether the state is the initial state or not. (Only one initial state is
allowed) (Default value = False)

add_transition(source: str, dest: str)→ None
Adds a transition from one state to another.

Args: source (str): the name of the state from where the transition starts dest (str): the name of the state
where the transition ends

get_state(name)→ spade.behaviour.State

get_states()→ Dict[str, spade.behaviour.State]

is_valid_transition(source: str, dest: str)→ bool
Checks if a transitions is registered in the FSM

Args: source (str): the source state name dest (str): the destination state name

52 Chapter 11. API Documentation

SPADE Documentation, Release 3.3.0

Returns: bool: wether the transition is valid or not

run()→ None
In this kind of behaviour there is no need to overload run. The run methods to be overloaded are in the
State class.

setup()→ None

to_graphviz()→ str
Converts the FSM behaviour structure to Graphviz syntax

Returns: str: the graph in Graphviz syntax

exception spade.behaviour.NotValidState
Bases: Exception

exception spade.behaviour.NotValidTransition
Bases: Exception

class spade.behaviour.OneShotBehaviour
Bases: spade.behaviour.CyclicBehaviour

This behaviour is only executed once

class spade.behaviour.PeriodicBehaviour(period: float, start_at: Op-
tional[datetime.datetime] = None)

Bases: spade.behaviour.CyclicBehaviour

This behaviour is executed periodically with an interval

period
Get the period.

class spade.behaviour.State
Bases: spade.behaviour.OneShotBehaviour

A state of a FSMBehaviour is a OneShotBehaviour

set_next_state(state_name: str)→ None
Set the state to transition to when this state is finished. state_name must be a valid state and the transition
must be registered. If set_next_state is not called then current state is a final state.

Args: state_name (str): the name of the state to transition to

class spade.behaviour.TimeoutBehaviour(start_at)
Bases: spade.behaviour.OneShotBehaviour

This behaviour is executed once at after specified datetime

spade.behaviour.now()
Returns new datetime object representing current time local to tz.

tz Timezone object.

If no tz is specified, uses local timezone.

11.1.4 spade.container module

class spade.container.Container
Bases: spade.container.Container

The container class allows agents to exchange messages without using the XMPP socket if they are in the same
process. The container is a singleton.

11.1. spade package 53

SPADE Documentation, Release 3.3.0

spade.container.get_or_create_eventloop()

spade.container.run_container(main_func: Coroutine)→ None

11.1.5 spade.message module

class spade.message.Message(to: Optional[str] = None, sender: Optional[str] = None, body: Op-
tional[str] = None, thread: Optional[str] = None, metadata: Op-
tional[Dict[str, str]] = None)

Bases: spade.message.MessageBase

make_reply()→ spade.message.Message
Creates a copy of the message, exchanging sender and receiver

Returns: spade.message.Message: a new message with exchanged sender and receiver

prepare()→ aioxmpp.stanza.Message
Returns an aioxmpp.stanza.Message built from the Message and prepared to be sent.

Returns: aioxmpp.stanza.Message: the message prepared to be sent

class spade.message.MessageBase(to: Optional[str] = None, sender: Optional[str] = None, body:
Optional[str] = None, thread: Optional[str] = None, metadata:
Optional[Dict[str, str]] = None)

Bases: object

body
Get body of the message Returns:

str: the body of the message

classmethod from_node(node: aioxmpp.stanza.Message)→ Type[spade.message.MessageBase]
Creates a new spade.message.Message from an aixoxmpp.stanza.Message

Args: node (aioxmpp.stanza.Message): an aioxmpp Message

Returns: spade.message.Message: a new spade Message

get_metadata(key: str)→ str
Get the value of a metadata. Returns None if metadata does not exist.

Args: key (str): name of the metadata

Returns: str: the value of the metadata (or None)

id

match(message: Type[MessageBase])→ bool
Returns wether a message matches with this message or not. The message can be a Message object or a
Template object.

Args: message (spade.message.Message): the message to match to

Returns: bool: wether the message matches or not

sender
Get jid of the sender

Returns: aioxmpp.JID: jid of the sender

set_metadata(key: str, value: str)→ None
Add a new metadata to the message

Args: key (str): name of the metadata value (str): value of the metadata

54 Chapter 11. API Documentation

SPADE Documentation, Release 3.3.0

thread
Get Thread of the message

Returns: str: thread id

to
Gets the jid of the receiver.

Returns: aioxmpp.JID: jid of the receiver

11.1.6 spade.presence module

exception spade.presence.ContactNotFound
Bases: Exception

class spade.presence.PresenceManager(agent)
Bases: object

approve(peer_jid: str)→ None
Approve a subscription request from jid

Args: peer_jid (str): the JID to approve

get_contact(jid: aioxmpp.structs.JID)→ Dict
Returns a contact

Args: jid (aioxmpp.JID): jid of the contact

Returns: dict: the roster of contacts

get_contacts()→ Dict[str, Dict]
Returns list of contacts

Returns: dict: the roster of contacts

is_available()→ bool
Returns the available flag from the state

Returns: bool: wether the agent is available or not

on_available(peer_jid: str, stanza: aioxmpp.stanza.Presence)→ None
Callback called when a contact becomes available. To ve overloaded by user.

Args: peer_jid (str): the JID of the agent that is available stanza (aioxmpp.Presence): The presence mes-
sage containing type, show, priority and status values.

on_subscribe(peer_jid: str)→ None
Callback called when a subscribe query is received. To ve overloaded by user.

Args: peer_jid (str): the JID of the agent asking for subscription

on_subscribed(peer_jid: str)→ None
Callback called when a subscribed message is received. To ve overloaded by user.

Args: peer_jid (str): the JID of the agent that accepted subscription

on_unavailable(peer_jid: str, stanza: aioxmpp.stanza.Presence)→ None
Callback called when a contact becomes unavailable. To ve overloaded by user.

Args: peer_jid (str): the JID of the agent that is unavailable stanza (aioxmpp.Presence): The presence
message containing type, show, priority and status values.

on_unsubscribe(peer_jid: str)→ None
Callback called when an unsubscribe query is received. To ve overloaded by user.

11.1. spade package 55

SPADE Documentation, Release 3.3.0

Args: peer_jid (str): the JID of the agent asking for unsubscription

on_unsubscribed(peer_jid: str)→ None
Callback called when an unsubscribed message is received. To ve overloaded by user.

Args: peer_jid (str): the JID of the agent that unsubscribed

priority
The currently set priority which is broadcast when the client connects and when the presence is re-emitted.

This attribute cannot be written. It does not reflect the actual presence seen by others. For example when
the client is in fact offline, others will see unavailable presence no matter what is set here.

Returns: int: the priority of the connection

set_available(show: Optional[<unknown>.PresenceShow] = <PresenceShow.NONE: None>)
Sets the agent availability to True.

Args: show (aioxmpp.PresenceShow, optional): the show state of the presence (Default value = Pres-
enceShow.NONE)

set_presence(state: Optional[aioxmpp.structs.PresenceState] = None, status: Optional[str] = None,
priority: Optional[int] = None)

Change the presence broadcast by the client. If the client is currently connected, the new presence is
broadcast immediately.

Args: state(aioxmpp.PresenceState, optional): New presence state to broadcast (Default value = None)
status(dict or str, optional): New status information to broadcast (Default value = None) priority (int,
optional): New priority for the resource (Default value = None)

set_unavailable()→ None
Sets the agent availability to False.

state
The currently set presence state (as aioxmpp.PresenceState) which is broadcast when the client connects
and when the presence is re-emitted.

This attribute cannot be written. It does not reflect the actual presence seen by others. For example when
the client is in fact offline, others will see unavailable presence no matter what is set here.

Returns: aioxmpp.PresenceState: the presence state of the agent

status
The currently set textual presence status which is broadcast when the client connects and when the presence
is re-emitted.

This attribute cannot be written. It does not reflect the actual presence seen by others. For example when
the client is in fact offline, others will see unavailable presence no matter what is set here.

Returns: dict: a dict with the status in different languages (default key is None)

subscribe(peer_jid: str)→ None
Asks for subscription

Args: peer_jid (str): the JID you ask for subscriptiion

unsubscribe(peer_jid: str)→ None
Asks for unsubscription

Args: peer_jid (str): the JID you ask for unsubscriptiion

56 Chapter 11. API Documentation

SPADE Documentation, Release 3.3.0

11.1.7 spade.template module

class spade.template.ANDTemplate(expr1, expr2)
Bases: spade.template.BaseTemplate

match(message)

class spade.template.BaseTemplate
Bases: object

Template operators

class spade.template.NOTTemplate(expr)
Bases: spade.template.BaseTemplate

match(message)

class spade.template.ORTemplate(expr1, expr2)
Bases: spade.template.BaseTemplate

match(message)

class spade.template.Template(to: Optional[str] = None, sender: Optional[str] = None, body:
Optional[str] = None, thread: Optional[str] = None, metadata:
Optional[Dict[str, str]] = None)

Bases: spade.template.BaseTemplate, spade.message.MessageBase

Template for message matching

class spade.template.XORTemplate(expr1, expr2)
Bases: spade.template.BaseTemplate

match(message)

11.1.8 spade.trace module

class spade.trace.TraceStore(size: int)
Bases: object

Stores and allows queries about events.

all(limit: Optional[int] = None)→ List[spade.message.Message]
Returns all the events, until a limit if defined

Args: limit (int, optional): the max length of the events to return (Default value = None)

Returns: list: a list of events

append(event: spade.message.Message, category: Optional[str] = None)→ None
Adds a new event to the trace store. The event may hava a category

Args: event (spade.message.Message): the event to be stored category (str, optional): a category to clas-
sify the event (Default value = None)

filter(limit: Optional[int] = None, to: Optional[str] = None, category: Optional[str] = None) →
List[spade.message.Message]

Returns the events that match the filters

Args: limit (int, optional): the max length of the events to return (Default value = None) to (str, optional):
only events that have been sent or received by ‘to’ (Default value = None) category (str, optional):
only events belonging to the category (Default value = None)

Returns: list: a list of filtered events

11.1. spade package 57

SPADE Documentation, Release 3.3.0

len()→ int
Length of the store

Returns: int: the size of the trace store

received(limit: Optional[int] = None)→ List[spade.message.Message]
Returns all the events that have been received (excluding sent events), until a limit if defined

Args: limit (int, optional): the max length of the events to return (Default value = None)

Returns: list: a list of received events

reset()→ None
Resets the trace store

11.1.9 spade.web module

class spade.web.WebApp(agent)
Bases: object

Module to handle agent’s web interface

add_get(path: str, controller: Coroutine, template: str, raw: Optional[bool] = False)→ None
Setup a route of type GET

Args: path (str): URL to listen to controller (coroutine): the coroutine to handle the request template
(str): the template to render the response or None if it is a JSON response raw (bool): indicates if
post-processing (jinja, json, etc) is needed or not

add_post(path: str, controller: Coroutine, template: str, raw: Optional[bool] = False)→ None
Setup a route of type POST

Args: path (str): URL to listen to controller (coroutine): the coroutine to handle the request template
(str): the template to render the response or None if it is a JSON response raw (bool): indicates if
post-processing (jinja, json, etc) is needed or not

agent_processor(request)

find_behaviour(behaviour_str: str)→ Optional[Type[spade.behaviour.CyclicBehaviour]]

get_agent(request)

get_behaviour(request)

get_messages(request)

index(request)

is_started()→ bool

kill_behaviour(request)

send_agent(request)

setup_routes()→ None

start(hostname: Optional[str] = None, port: Optional[int] = None, templates_path: Optional[str] =
None)

Starts the web interface.

Args: hostname (str, optional): host name to listen from. (Default value = None) port (int, optional):
port to listen from. (Default value = None) templates_path (str, optional): path to look for templates.
(Default value = None)

stop_agent(request)

58 Chapter 11. API Documentation

SPADE Documentation, Release 3.3.0

stop_now(request)

static timeago(date)

unsubscribe_agent(request)

spade.web.start_server_in_loop(runner: aiohttp.web_runner.AppRunner, hostname: str, port:
int, agent)

Listens to http requests and sends them to the webapp.

Args: runner (AppRunner): AppRunner to process the http requests hostname (str): host name to listen from.
port (int): port to listen from. agent (spade.agent.Agent): agent that owns the web app.

spade.web.unused_port(hostname: str)→ None
Return a port that is unused on the current host.

11.1.10 Module contents

11.1. spade package 59

SPADE Documentation, Release 3.3.0

60 Chapter 11. API Documentation

CHAPTER 12

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

12.1 Types of Contributions

12.1.1 Implement Plugins

SPADE can be extended by means of plugins. See how to develop one at Extending SPADE with plugins.

12.1.2 Report Bugs

Report bugs at https://github.com/javipalanca/spade/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

12.1.3 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

61

https://github.com/javipalanca/spade/issues

SPADE Documentation, Release 3.3.0

12.1.4 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

12.1.5 Write Documentation

SPADE could always use more documentation, whether as part of the official SPADE docs, in docstrings, or even on
the web in blog posts, articles, and such.

12.1.6 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/javipalanca/spade/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

12.2 Get Started!

Ready to contribute? Here’s how to set up spade for local development.

1. Fork the spade repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/spade.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv spade
$ cd spade/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 spade tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

62 Chapter 12. Contributing

https://github.com/javipalanca/spade/issues

SPADE Documentation, Release 3.3.0

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

12.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.6, and for PyPy. Check https://travis-ci.org/javipalanca/spade/pull_
requests and make sure that the tests pass for all supported Python versions.

12.4 Tips

To run a subset of tests:

$ py.test tests.test_agent

12.3. Pull Request Guidelines 63

https://travis-ci.org/javipalanca/spade/pull_requests
https://travis-ci.org/javipalanca/spade/pull_requests

SPADE Documentation, Release 3.3.0

64 Chapter 12. Contributing

CHAPTER 13

Code of Conduct

13.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

13.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

65

SPADE Documentation, Release 3.3.0

13.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

13.4 Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the
project or its community. Examples of representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed representative at an online or offline
event. Representation of a project may be further defined and clarified by project maintainers.

13.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at
jpalanca AT dsic DOT upv DOT es. All complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality
with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

13.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant homepage, version 1.4.

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq

66 Chapter 13. Code of Conduct

https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
https://www.contributor-covenant.org/faq

CHAPTER 14

Credits

14.1 Development Lead

• Javi Palanca <https://github.com/javipalanca>

14.2 Contributors

• Sergio Alemany <https://github.com/Gersiete>

67

https://github.com/javipalanca
https://github.com/Gersiete

SPADE Documentation, Release 3.3.0

68 Chapter 14. Credits

CHAPTER 15

History

15.1 3.3.0 (2023-06-13)

• Updated to Python>=3.8

• Changed the way agents are launched (now with spade.run())

• Python 3.11 still not supported due to a bug in aiohttp

• Deprecated support for Python<=3.7

15.2 3.2.3 (2022-12-13)

• Updated third-party libs

15.3 3.2.2 (2021-11-25)

• Hotfix for the event loop in windows when python is 3.6

15.4 3.2.1 (2021-11-16)

• Fixed event loop for windows

15.5 3.2.0 (2021-07-13)

• Added support for Python 3.8 and 3.9

• Fixed support for Linux, Windows and macOS

69

SPADE Documentation, Release 3.3.0

15.6 3.1.9 (2021-07-08)

• Minor fix in docs.

15.7 3.1.8 (2021-07-08)

• Added examples.

• Fixed documentation examples.

• Added Github CI support.

15.8 3.1.7 (2021-06-25)

• Added hooks for plugins.

• Minor bug fixings.

15.9 3.1.6 (2020-05-22)

• Fixed coverage and ci.

15.10 3.1.5 (2020-05-21)

• Fixed how to stop behaviours.

• Fixed some tests.

• Blackstyled code.

15.11 3.1.4 (2019-11-04)

• Fixed issue with third party versions.

• Use factories in tests.

• Updated documentation and examples.

• Minor bug fixing.

15.12 3.1.3 (2019-07-18)

• Added BDI plugin (https://github.com/javipalanca/spade_bdi).

• Improved the platform stop (quit_spade).

• Minor bug fixing.

70 Chapter 15. History

https://github.com/javipalanca/spade_bdi

SPADE Documentation, Release 3.3.0

15.13 3.1.2 (2019-05-14)

• Hotfix docs.

15.14 3.1.1 (2019-05-14)

• Added Python 3.7 support.

• Added Code of Conduct.

• Minor bugs fixed.

15.15 3.1.0 (2019-03-22)

• Agents now run in a single event loop managed by the container.

• Behaviors can be waited for using the “join” method.

• To check if a behaviours is done you can now use the “is_done” method.

• The “setup” method is now a coroutine.

• New “quit_spade” helper to stop the whole process.

• The “start” and “stop” methods change depending on the context, since it is the container who will properly start
or stop the agent. They return a coroutine or a future depending on whether they are called from a coroutine or
a synchronous method.

15.16 3.0.9 (2018-10-24)

• Added raw parameter to allow raw web responses.

• Changed default agent urls to the “/spade” namespace to avoid conflicts.

15.17 3.0.8 (2018-10-02)

• Added a container mechanism to speedup local sends.

• Added performance example.

• Improved API doc.

• Added container tests.

15.18 3.0.7 (2018-09-27)

• Fixed bug when running FSM states.

• Improved Message __str__.

• Fixed bug when thread is not defined in a message.

15.13. 3.1.2 (2019-05-14) 71

SPADE Documentation, Release 3.3.0

• aioxmpp send method is now in client instead of stream.

15.19 3.0.6 (2018-09-27)

• Added statement to relinquish the cpu at each behaviour loop.

• Message Thread is now stored as metadata for simplicity.

15.20 3.0.5 (2018-09-21)

• Added JSON responses in web module.

• Some improvements in aiothread management.

15.21 3.0.4 (2018-09-20)

• Added coroutines to start agents from within other agents.

• Improved API doc format.

15.22 3.0.3 (2018-09-12)

• Rename internal templates to avoid conflicts.

• Added API doc.

• Minor bug fixes.

15.23 3.0.2 (2018-09-12)

• Fixed presence notification updates.

• Fixed FSM graphviz visualization.

• Raise AuthenticationFailure Exception when user is not registered or user or password is wrong.

• Import init improvements.

• Attribute auto_register is now default True.

• Improved documentation.

• Other minor fixes.

15.24 3.0.1 (2018-09-07)

• Minor doc fixings and improvements.

72 Chapter 15. History

SPADE Documentation, Release 3.3.0

15.25 3.0.0 (2017-10-06)

• Started writing 3.0 version.

15.25. 3.0.0 (2017-10-06) 73

SPADE Documentation, Release 3.3.0

74 Chapter 15. History

CHAPTER 16

Indices and tables

• genindex

• modindex

• search

75

SPADE Documentation, Release 3.3.0

76 Chapter 16. Indices and tables

Python Module Index

s
spade, 59
spade.agent, 49
spade.behaviour, 51
spade.container, 53
spade.message, 54
spade.presence, 55
spade.template, 57
spade.trace, 57
spade.web, 58

77

SPADE Documentation, Release 3.3.0

78 Python Module Index

Index

A
add_behaviour() (spade.agent.Agent method), 49
add_get() (spade.web.WebApp method), 58
add_post() (spade.web.WebApp method), 58
add_state() (spade.behaviour.FSMBehaviour

method), 52
add_transition() (spade.behaviour.FSMBehaviour

method), 52
Agent (class in spade.agent), 49
agent_processor() (spade.web.WebApp method),

58
all() (spade.trace.TraceStore method), 57
ANDTemplate (class in spade.template), 57
append() (spade.trace.TraceStore method), 57
approve() (spade.presence.PresenceManager

method), 55
AuthenticationFailure, 50
avatar (spade.agent.Agent attribute), 49

B
BaseTemplate (class in spade.template), 57
BehaviourNotFinishedException, 51
body (spade.message.MessageBase attribute), 54
build_avatar_url() (spade.agent.Agent static

method), 49

C
ContactNotFound, 55
Container (class in spade.container), 53
CyclicBehaviour (class in spade.behaviour), 51

D
dispatch() (spade.agent.Agent method), 49

E
enqueue() (spade.behaviour.CyclicBehaviour

method), 51
exit_code (spade.behaviour.CyclicBehaviour at-

tribute), 51

F
filter() (spade.trace.TraceStore method), 57
find_behaviour() (spade.web.WebApp method), 58
from_node() (spade.message.MessageBase class

method), 54
FSMBehaviour (class in spade.behaviour), 52

G
get() (spade.agent.Agent method), 49
get() (spade.behaviour.CyclicBehaviour method), 51
get_agent() (spade.web.WebApp method), 58
get_behaviour() (spade.web.WebApp method), 58
get_contact() (spade.presence.PresenceManager

method), 55
get_contacts() (spade.presence.PresenceManager

method), 55
get_messages() (spade.web.WebApp method), 58
get_metadata() (spade.message.MessageBase

method), 54
get_or_create_eventloop() (in module

spade.container), 53
get_state() (spade.behaviour.FSMBehaviour

method), 52
get_states() (spade.behaviour.FSMBehaviour

method), 52

H
has_behaviour() (spade.agent.Agent method), 50

I
id (spade.message.MessageBase attribute), 54
index() (spade.web.WebApp method), 58
is_alive() (spade.agent.Agent method), 50
is_available() (spade.presence.PresenceManager

method), 55
is_done() (spade.behaviour.CyclicBehaviour

method), 51
is_killed() (spade.behaviour.CyclicBehaviour

method), 51

79

SPADE Documentation, Release 3.3.0

is_started() (spade.web.WebApp method), 58
is_valid_transition()

(spade.behaviour.FSMBehaviour method),
52

J
join() (spade.behaviour.CyclicBehaviour method), 51

K
kill() (spade.behaviour.CyclicBehaviour method), 51
kill_behaviour() (spade.web.WebApp method), 58

L
len() (spade.trace.TraceStore method), 57

M
mailbox_size() (spade.behaviour.CyclicBehaviour

method), 51
make_reply() (spade.message.Message method), 54
match() (spade.behaviour.CyclicBehaviour method),

51
match() (spade.message.MessageBase method), 54
match() (spade.template.ANDTemplate method), 57
match() (spade.template.NOTTemplate method), 57
match() (spade.template.ORTemplate method), 57
match() (spade.template.XORTemplate method), 57
Message (class in spade.message), 54
MessageBase (class in spade.message), 54

N
name (spade.agent.Agent attribute), 50
NOTTemplate (class in spade.template), 57
NotValidState, 53
NotValidTransition, 53
now() (in module spade.behaviour), 53

O
on_available() (spade.presence.PresenceManager

method), 55
on_end() (spade.behaviour.CyclicBehaviour method),

51
on_start() (spade.behaviour.CyclicBehaviour

method), 52
on_subscribe() (spade.presence.PresenceManager

method), 55
on_subscribed() (spade.presence.PresenceManager

method), 55
on_unavailable() (spade.presence.PresenceManager

method), 55
on_unsubscribe() (spade.presence.PresenceManager

method), 55
on_unsubscribed()

(spade.presence.PresenceManager method), 56

OneShotBehaviour (class in spade.behaviour), 53
ORTemplate (class in spade.template), 57

P
period (spade.behaviour.PeriodicBehaviour attribute),

53
PeriodicBehaviour (class in spade.behaviour), 53
prepare() (spade.message.Message method), 54
PresenceManager (class in spade.presence), 55
priority (spade.presence.PresenceManager at-

tribute), 56

R
receive() (spade.behaviour.CyclicBehaviour

method), 52
received() (spade.trace.TraceStore method), 58
remove_behaviour() (spade.agent.Agent method),

50
reset() (spade.trace.TraceStore method), 58
run() (spade.behaviour.CyclicBehaviour method), 52
run() (spade.behaviour.FSMBehaviour method), 53
run_container() (in module spade.container), 54

S
send() (spade.behaviour.CyclicBehaviour method), 52
send_agent() (spade.web.WebApp method), 58
sender (spade.message.MessageBase attribute), 54
set() (spade.agent.Agent method), 50
set() (spade.behaviour.CyclicBehaviour method), 52
set_agent() (spade.behaviour.CyclicBehaviour

method), 52
set_available() (spade.presence.PresenceManager

method), 56
set_container() (spade.agent.Agent method), 50
set_loop() (spade.agent.Agent method), 50
set_metadata() (spade.message.MessageBase

method), 54
set_next_state() (spade.behaviour.State method),

53
set_presence() (spade.presence.PresenceManager

method), 56
set_template() (spade.behaviour.CyclicBehaviour

method), 52
set_unavailable()

(spade.presence.PresenceManager method), 56
setup() (spade.agent.Agent method), 50
setup() (spade.behaviour.FSMBehaviour method), 53
setup_routes() (spade.web.WebApp method), 58
spade (module), 59
spade.agent (module), 49
spade.behaviour (module), 51
spade.container (module), 53
spade.message (module), 54
spade.presence (module), 55

80 Index

SPADE Documentation, Release 3.3.0

spade.template (module), 57
spade.trace (module), 57
spade.web (module), 58
start() (spade.agent.Agent method), 50
start() (spade.behaviour.CyclicBehaviour method),

52
start() (spade.web.WebApp method), 58
start_server_in_loop() (in module spade.web),

59
State (class in spade.behaviour), 53
state (spade.presence.PresenceManager attribute), 56
status (spade.presence.PresenceManager attribute),

56
stop() (spade.agent.Agent method), 50
stop_agent() (spade.web.WebApp method), 58
stop_now() (spade.web.WebApp method), 58
submit() (spade.agent.Agent method), 50
subscribe() (spade.presence.PresenceManager

method), 56

T
Template (class in spade.template), 57
thread (spade.message.MessageBase attribute), 54
timeago() (spade.web.WebApp static method), 59
TimeoutBehaviour (class in spade.behaviour), 53
to (spade.message.MessageBase attribute), 55
to_graphviz() (spade.behaviour.FSMBehaviour

method), 53
TraceStore (class in spade.trace), 57

U
unsubscribe() (spade.presence.PresenceManager

method), 56
unsubscribe_agent() (spade.web.WebApp

method), 59
unused_port() (in module spade.web), 59

W
WebApp (class in spade.web), 58

X
XORTemplate (class in spade.template), 57

Index 81

	SPADE
	Features
	Plugins
	Credits

	Foreword
	The SPADE agent model
	Connection to the platform
	The message dispatcher
	The behaviours

	Installation
	Stable release
	From sources

	Quick Start
	Creating your first dummy agent
	An agent with a behaviour
	Finishing a behaviour
	Finishing SPADE
	Creating an agent from within another agent

	Agent communications
	Using templates
	Sending and Receiving Messages

	Advanced Behaviours
	Periodic Behaviour
	TimeoutBehaviour
	Finite State Machine Behaviour
	Waiting a Behaviour

	Presence Notification
	Presence Manager
	Availability handlers
	Contact List
	Subscribing and unsubscribing to contacts
	Example

	Web Graphical Interface
	Creating custom web interfaces

	Extending SPADE with plugins
	New Behaviours
	New Mixins
	New Libraries

	API Documentation
	spade package

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Code of Conduct
	Our Pledge
	Our Standards
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Credits
	Development Lead
	Contributors

	History
	3.3.0 (2023-06-13)
	3.2.3 (2022-12-13)
	3.2.2 (2021-11-25)
	3.2.1 (2021-11-16)
	3.2.0 (2021-07-13)
	3.1.9 (2021-07-08)
	3.1.8 (2021-07-08)
	3.1.7 (2021-06-25)
	3.1.6 (2020-05-22)
	3.1.5 (2020-05-21)
	3.1.4 (2019-11-04)
	3.1.3 (2019-07-18)
	3.1.2 (2019-05-14)
	3.1.1 (2019-05-14)
	3.1.0 (2019-03-22)
	3.0.9 (2018-10-24)
	3.0.8 (2018-10-02)
	3.0.7 (2018-09-27)
	3.0.6 (2018-09-27)
	3.0.5 (2018-09-21)
	3.0.4 (2018-09-20)
	3.0.3 (2018-09-12)
	3.0.2 (2018-09-12)
	3.0.1 (2018-09-07)
	3.0.0 (2017-10-06)

	Indices and tables
	Python Module Index
	Index

